Enhancing the quality factor of aerosol jet printed RF spiral inductors through gold electroplating

Author:

Mosa Md AbuORCID,Kang HuijuneORCID,Jo Jeong YeopORCID,Bang Jinho,Ahn DalORCID,Jang YounaORCID,Kwon Kye-SiORCID

Abstract

Abstract Aerosol jet printing (AJP) outperforms inkjet printing by significantly reducing printed line width, effectively addressing issues such as bulging and surface irregularities. This technology allows for line widths as narrow as 10–100 μm with high aspect ratios, making it well-suited for radio frequency (RF) applications. Consequently, AJP emerges as a valuable tool for direct printing in RF applications. Among conductive inks, silver nanoparticle (Ag-NP) ink is preferred for its straightforward direct printing process and lower sintering temperature requirements. However, the conductivity of printed Ag NP traces falls markedly below that of bulk silver due to significant porosity, limiting its use in RF applications where a high-quality factor is essential. The quality factor of an inductor, indicative of its efficiency in energy storage and release, inversely correlates with its resistance. Our research combines AJP with selective electroplating to reduce the resistance of printed traces, thereby enhancing the inductor’s quality factor for RF applications. We fabricated spiral inductors on alumina substrates using silver NP ink and subsequently applied selective gold electroplating to these traces. This approach led to a significant increase in the inductors’ quality factor, improving it by a factor of 3–5 in the RF frequency range of 100–700 MHz.

Funder

Soonchunhyang University

Ministry of Science and ICT

the Korea Evaluation Institute of Industrial Technology

Publisher

IOP Publishing

Reference55 articles.

1. Integrated multilayer RF passives in silicon technology;Burghartz,1998

2. Design and fabrication of passive components using TF-IPD technology;Lee,2009

3. Integrated RF components in a SiGe bipolar technology;Burghartz;IEEE J. Solid-State Circuits,1997

4. Integration of cellular front end modules on advanced high resistivity SOI RF CMOS technology;Gianesello,2011

5. Comparison and analysis of integrated passive device technologies for wireless radio frequency module;Kundu,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3