Wide neural networks of any depth evolve as linear models under gradient descent *

Author:

Lee Jaehoon,Xiao Lechao,Schoenholz Samuel S,Bahri Yasaman,Novak Roman,Sohl-Dickstein Jascha,Pennington Jeffrey

Abstract

Abstract A longstanding goal in deep learning research has been to precisely characterize training and generalization. However, the often complex loss landscapes of neural networks (NNs) have made a theory of learning dynamics elusive. In this work, we show that for wide NNs the learning dynamics simplify considerably and that, in the infinite width limit, they are governed by a linear model obtained from the first-order Taylor expansion of the network around its initial parameters. Furthermore, mirroring the correspondence between wide Bayesian NNs and Gaussian processes (GPs), gradient-based training of wide NNs with a squared loss produces test set predictions drawn from a GP with a particular compositional kernel. While these theoretical results are only exact in the infinite width limit, we nevertheless find excellent empirical agreement between the predictions of the original network and those of the linearized version even for finite practically-sized networks. This agreement is robust across different architectures, optimization methods, and loss functions.

Publisher

IOP Publishing

Subject

Statistics, Probability and Uncertainty,Statistics and Probability,Statistical and Nonlinear Physics

Reference48 articles.

1. Tensorflow: a system for large-scale machine learning;Abadi,2016

2. On the convergence rate of training recurrent neural networks;Allen-Zhu,2018

3. A convergence theory for deep learning via over-parameterization;Allen-Zhu,2019

4. Dynamical isometry and a mean field theory of RNNs: gating enables signal propagation in recurrent neural networks;Chen,2018

5. On the global convergence of gradient descent for over-parameterized models using optimal transport;Chizat,2018

Cited by 108 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3