Optimization of the dynamic transition in the continuous coloring problem

Author:

Cavaliere Angelo Giorgio,Lesieur Thibault,Ricci-Tersenghi Federico

Abstract

Abstract Random constraint satisfaction problems (CSPs) can exhibit a phase where the number of constraints per variable α makes the system solvable in theory on the one hand, but also makes the search for a solution hard, meaning that common algorithms such as Monte Carlo (MC) method fail to find a solution. The onset of this hardness is deeply linked to the appearance of a dynamical phase transition where the phase space of the problem breaks into an exponential number of clusters. The exact position of this dynamical phase transition is not universal with respect to the details of the Hamiltonian one chooses to represent a given problem. In this paper, we develop some theoretical tools in order to find a systematic way to build a Hamiltonian that maximizes the dynamic α d threshold. To illustrate our techniques, we will concentrate on the problem of continuous coloring, where one tries to set an angle x i ∈ [0; 2π] on each node of a network in such a way that no adjacent nodes are closer than some threshold angle θ, that is cos(x i x j )⩽ cos θ. This problem can be both seen as a continuous version of the discrete graph coloring problem or as a one-dimensional version of the Mari–Krzakala–Kurchan model. The relevance of this model stems from the fact that continuous CSPs on sparse random graphs remain largely unexplored in statistical physics. We show that for sufficiently small angle θ this model presents a random first order transition and compute the dynamical, condensation and Kesten–Stigum transitions; we also compare the analytical predictions with MC simulations for values of θ = 2π/q, q N . Choosing such values of q allows us to easily compare our results with the renowned problem of discrete coloring.

Publisher

IOP Publishing

Subject

Statistics, Probability and Uncertainty,Statistics and Probability,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3