Improved mean-field dynamical equations are able to detect the two-step relaxation in glassy dynamics at low temperatures

Author:

Machado David,Mulet Roberto,Ricci-Tersenghi Federico

Abstract

Abstract We study the stochastic relaxation dynamics of the Ising p-spin model on a random graph, which is a well-known model with glassy dynamics at low temperatures. We introduce and discuss a new closure scheme for the master equation governing the continuous-time relaxation of the system, which translates into a set of differential equations for the evolution of local probabilities. The solution to these dynamical mean-field equations describes the out-of-equilibrium dynamics at high temperatures very well, notwithstanding the key observation that the off-equilibrium probability measure contains higher-order interaction terms not present in the equilibrium measure. In the low-temperature regime, the solution to the dynamical mean-field equations shows the correct two-step relaxation (a typical feature of glassy dynamics), but with a too-short relaxation timescale. We propose a solution to this problem by identifying the range of energies where entropic barriers play a key role and defining a renormalized microscopic timescale for the dynamical mean-field solution. The final result perfectly matches the complex out-of-equilibrium dynamics computed through extensive Monte Carlo simulations.

Publisher

IOP Publishing

Subject

Statistics, Probability and Uncertainty,Statistics and Probability,Statistical and Nonlinear Physics

Reference39 articles.

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3