Abstract
Abstract
We investigate the first passage statistics of active continuous time random walks with Poissonian waiting time distribution on a one dimensional infinite lattice and a two dimensional infinite square lattice. We study the small and large time properties of the probability of the first return to the origin as well as the probability of the first passage to an arbitrary lattice site. It is well known that the occupation probabilities of an active particle resemble that of an ordinary Brownian motion with an effective diffusion constant at large times. Interestingly, we demonstrate that even at the leading order, the first passage probabilities are not given by a simple effective diffusion constant. We demonstrate that at late times, activity enhances the probability of the first return to the origin and the probabilities of the first passage to lattice sites close enough to the origin, which we quantify in terms of the Péclet number. Additionally, we derive the first passage probabilities of a symmetric random walker and a biased random walker without activity as limiting cases. We verify our analytic results by performing kinetic Monte Carlo simulations of an active random walker in one and two dimensions.
Subject
Statistics, Probability and Uncertainty,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献