Microscopic theory for hyperuniformity in two-dimensional chiral active fluid

Author:

Kuroda Yuta,Miyazaki Kunimasa

Abstract

Abstract Some nonequilibrium systems exhibit anomalous suppression of the large-scale density fluctuations, so-called hyperuniformity. Recently, hyperuniformity was found numerically in a simple model of chiral active fluids (Lei et al 2019 Sci. Adv. 5 eaau7423). We revisit this phenomenon and put forward a microscopic theory to explain it. An effective fluctuating hydrodynamic equation is derived for a simple particle model of chiral active matter. We show that the linear analysis of the obtained hydrodynamic equation captures hyperuniformity. Our theory yields hyperuniformity characterized by the same exponents as the numerical observation, but the agreement with the numerical data is qualitative. We also argue that the hydrodynamic equation for the effective particle representation, in which each rotating trajectory is regarded as an effective particle, has the same form as the macroscopic description of the random organization model with the center of mass conservation.

Publisher

IOP Publishing

Subject

Statistics, Probability and Uncertainty,Statistics and Probability,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Correlated noise and critical dimensions;Physical Review E;2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3