The statistics of the ordering of chiral ribbons on a honeycomb lattice

Author:

McCarthy Maxine M,Fall William S,Zeng Xiangbing,Ungar Goran,Gehring Gillian A

Abstract

Abstract A novel model, devised to describe spontaneous chirality synchronization in complex liquids and liquid crystals, is proposed and studied. Segments of ribbon-like molecular columns with left- or right-handed 180° twist lie on the bonds of a honeycomb lattice so that three ribbons meet in a vertex of the hexagonal honeycomb. The energy of each vertex is a minimum if the three ribbons have the same chirality, −ɛ, and is +ɛ otherwise, and the ground state is homochiral, i.e. all ribbons have the same handedness. The energy levels for two vertices linked by a single ribbon are either −2ɛ, 0 and +2ɛ in this vertex model. Monte Carlo simulations demonstrate that this model is identical to an Ising spin model on a Kagome lattice, for which the site energy structure is quite different. The equivalence of the ordering of the vertex and Ising spin models is also shown analytically. The energy difference between the disordered and ground states, 4J in the spin model, is related to the transition temperature for the Kagome lattice using the exact result, T c = 2.14 J. The ordering energy difference for a single site is 50% higher for the vertex model. The thermodynamic energy for the vertex model is corrected by a factor of 1/3 due to double counting and this makes the specific heat of the vertex model also equal to that of the spin model as expected. Other similar models where there is an unusual relation between the site and thermodynamic energies are discussed briefly.

Publisher

IOP Publishing

Subject

Statistics, Probability and Uncertainty,Statistics and Probability,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3