Author:
Schrack Lukas,Petersen Charlotte F,Caraglio Michele,Jung Gerhard,Franosch Thomas
Abstract
Abstract
We investigate the tagged-particle motion in a strongly interacting quasi-confined liquid using periodic boundary conditions along the confining direction. Within a mode-coupling theory of the glass transition we calculate the self-nonergodicity parameters and the self-intermediate scattering function and compare them with event-driven molecular dynamics simulations. We observe non-monotonic behavior for the in-plane mean-square displacement and further correlation functions which refer to higher mode indices encoding information about the perpendicular motion. The in-plane velocity-autocorrelation function reveals persistent anti-correlations with a negative algebraic power-law decay t
−2 at all packing fractions.
Subject
Statistics, Probability and Uncertainty,Statistics and Probability,Statistical and Nonlinear Physics