Analytical results for the distribution of first-passage times of random walks on random regular graphs
-
Published:2022-11-01
Issue:11
Volume:2022
Page:113403
-
ISSN:1742-5468
-
Container-title:Journal of Statistical Mechanics: Theory and Experiment
-
language:
-
Short-container-title:J. Stat. Mech.
Author:
Tishby Ido,Biham Ofer,Katzav Eytan
Abstract
Abstract
We present analytical results for the distribution of first-passage (FP) times of random walks (RWs) on random regular graphs that consist of N nodes of degree c ⩾ 3. Starting from a random initial node at time t = 0, at each time step t ⩾ 1 an RW hops into a random neighbor of its previous node. In some of the time steps the RW may hop into a yet-unvisited node while in other time steps it may revisit a node that has already been visited before. We calculate the distribution P(T
FP = t) of first-passage times from a random initial node i to a random target node j, where j ≠ i. We distinguish between FP trajectories whose backbone follows the shortest path (SPATH) from the initial node i to the target node j and FP trajectories whose backbone does not follow the shortest path (¬SPATH). More precisely, the SPATH trajectories from the initial node i to the target node j are defined as trajectories in which the subnetwork that consists of the nodes and edges along the trajectory is a tree network. Moreover, the shortest path between i and j on this subnetwork is the same as in the whole network. The SPATH scenario is probable mainly when the length ℓ
ij
of the shortest path between the initial node i and the target node j is small. The analytical results are found to be in very good agreement with the results obtained from computer simulations.
Subject
Statistics, Probability and Uncertainty,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Gaussian integral that counts regular graphs;Journal of Mathematical Physics;2024-09-01