The extremality of disordered phases for the mixed spin-(1,1/2) Ising model on a Cayley tree of arbitrary order

Author:

Akin Hasan,Mukhamedov Farrukh

Abstract

Abstract This paper continues the exploration of translation-invariant splitting Gibbs measures (TISGMs) within the framework of the Ising model with mixed spin-(1,1/2) (abbreviated as (1,1/2)-MSIM) on a Cayley tree of arbitrary order. Building upon our prior work (Akin and Mukhamedov 2022 J. Stat. Mech. 053204), where we extensively elucidated TISGMs and investigated the extremality of disordered phases employing a Markov chain indexed by a tree on a semi-infinite Cayley tree of order two, our current research extends this analysis. In the present study, we begin by constructing TISGMs and tree-indexed Markov chains tailored to the (1,1/2)-MSIM. Notably, we extend our scope to encompass Cayley trees of varying orders, thereby affording a comprehensive examination of the extremality characteristics inherent to disordered phases. Utilizing the Kesten–Stigum condition, we delve into the non-extremality aspects of disordered phases by scrutinizing the eigenvalues of the stochastic matrix associated with the (1,1/2)-MSIM on Cayley trees with order k ( k 3 ). This approach allows for a nuanced exploration of the model’s behavior and stability under different conditions.

Publisher

IOP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3