Author:
Santra Ion,Ajgaonkar Durgesh,Basu Urna
Abstract
Abstract
We study the motion of a one-dimensional particle that reverses its direction of acceleration stochastically. We focus on two contrasting scenarios, where the waiting times between two consecutive acceleration reversals are drawn from (i) an exponential distribution and (ii) a power-law distribution
ρ
(
τ
)
∼
τ
−
(
1
+
α
)
. We compute the mean, variance and short-time distribution of the position x(t) using a trajectory-based approach. We show that, while for the exponential waiting time,
⟨
x
2
(
t
)
⟩
∼
t
3
at long times, for the power-law case, a non-trivial algebraic growth
⟨
x
2
(
t
)
⟩
∼
t
2
ϕ
(
α
)
emerges, where
ϕ
(
α
)
=
2
,
(
5
−
α
)
/
2
and
3
/
2
for
α
<
1
,
1
<
α
⩽
2
and α > 2, respectively. Interestingly, we find that the long-time position distribution in case (ii) is a function of the scaled variable
x
/
t
ϕ
(
α
)
with an α-dependent scaling function, which has qualitatively very different shapes for α < 1 and α > 1. In contrast, for case (i), the typical long-time fluctuations of position are Gaussian.
Subject
Statistics, Probability and Uncertainty,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献