Is the Moyal equation for the Wigner function a quantum analogue of the Liouville equation?

Author:

Perepelkin E E,Sadovnikov B I,Inozemtseva N G,Burlakov E V,Afonin P V

Abstract

Abstract The Moyal equation describes the evolution of the Wigner function of a quantum system in the phase space. The right-hand side of the equation contains an infinite series with coefficients proportional to powers of the Planck constant. There is an interpretation of the Moyal equation as a quantum analogue of the classical Liouville equation. Indeed, if one uses the notion of the classical passage to the limit as the Planck constant tends to zero, then formally the right-hand side of the Moyal equation tends to zero. As a result, the Moyal equation becomes the classical Liouville equation for the distribution function. In this paper, we show that the right side of the Moyal equation does not explicitly depend on the Planck constant, and all terms of the series can make a significant contribution. The transition between the classical and quantum descriptions is related not to the Planck constant, but to the spatial scale. For a model quantum system with a potential in the form of a «quadratic funnel», an exact 3D solution of the Schrödinger equation is found and the corresponding Wigner function is constructed in the paper. Using trajectory analysis in the phase space, based on the representation of the right-hand side of the Moyal equation, it is shown that on the spatial microscale there is an infinite number of «trajectories» of the particle motion (thereby the concept of a trajectory is indefinite), and when passing to the macroscale, all «trajectories» concentrate around the classical trajectory.

Publisher

IOP Publishing

Subject

Statistics, Probability and Uncertainty,Statistics and Probability,Statistical and Nonlinear Physics

Reference21 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3