Exploring the role of heterogeneity in quorum sensing cells: a discrete state stochastic approach

Author:

Jangid Pankaj,Chaudhury Srabanti

Abstract

Abstract Quorum sensing (QS) is a bacterial communication process in which cells detect the local environment and collectively activate gene expression. The transcriptional activator (LuxR) for these genes has a specific allosteric site where the autoinducer (AHL) can bind and turn the activator on. At the single-cell level, the response to gene activation is poorly coordinated among the QS population which leads to heterogeneity in an isogenic population. The paper presents a theoretical framework that uses a discrete-state stochastic approach to address the issue of heterogeneity in the context of DNA target search processes in QS cells and takes into account the relevant physical–chemical processes. This minimal model allows us to understand the molecular mechanisms of the protein target search in the context of cell heterogeneity, and evaluate the analytical expression of the protein search times for the targets on DNA. Specifically, it is shown that the variations in AHL and LuxR binding rates, arising from the asymmetric distribution of LuxR proteins in the cell population, can cause significant variations in the target search on the DNA. It is also found that the intrinsic heterogeneity in the cell population can affect the average search time and this in turn depends on the AHL and LuxR binding rates. Proposed theoretical results have been validated by Monte Carlo simulations.

Publisher

IOP Publishing

Subject

Statistics, Probability and Uncertainty,Statistics and Probability,Statistical and Nonlinear Physics

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3