Finite temperature phases and excitations of bosons on a square lattice: a cluster mean field study

Author:

Malakar Manali,Sinha Sudip,Sinha S

Abstract

Abstract We study the finite temperature phases and collective excitations of hardcore as well as softcore bosons on a square lattice with nearest and next nearest neighbor interactions, focusing on the formation of various types of supersolid (SS) phases and their stability under thermal fluctuations. The interplay between the on-site, nearest, and next nearest neighbor interactions leads to various density ordering and structural transitions, which we have plotted out. Thermodynamic properties and phase diagrams are obtained by cluster mean field theory at finite temperatures, which includes quantum effects systematically, and they are compared with the single-site mean field (MF) results. We investigate the melting process of the SS phase to normal fluid (NF), which can occur in at least two steps due to the presence of two competing orders in the SS. A tetra-critical point exists at finite temperature and exhibits intriguing behavior, which is analyzed for different regimes of interactions. The phase diagrams reveal the different pathways of the thermal transition of SSs to the NF phase, for different interaction regimes, which can be accessible by thermal quench protocols used in recent experiments. We show how the phases and the transitions between them can be identified from the characteristic features of the excitation spectrum. We analyze the appearance of a low-energy gapped mode apart from the gapless sound mode in the SS phase, which is analogous to the gapped mode recently studied for dipolar SS phases. Finally, we discuss the relevance of the results of the present work in the context of ongoing experiments on ultracold atomic gases and newly observed SS phases.

Publisher

IOP Publishing

Subject

Statistics, Probability and Uncertainty,Statistics and Probability,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3