Abstract
Abstract
Thermal conductivity is a crucial material property for a diverse range of energy technologies, ranging from thermal management of high power electronics to thermal insulation for building envelopes. This review discusses recent advances in achieving high and low thermal conductivity (k) as relevant for energy applications, from high-k heat spreaders to low-k insulation. We begin with a brief introduction to the physics of heat conduction from both theoretical and computational perspectives. The heart of the review is a survey of recent advances in high- and low-k materials. The discussion of good heat conductors for thermal management includes inorganics and polymers in both bulk and low dimensional forms. For insulators, the discussion covers the effects of chemical composition, crystal structure, and defects and porosity. Promising areas for future research in both fundamental materials science and engineering technologies are noted.
Funder
National Science Foundation
U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program
National Science Foundation Graduate Research Fellowship Program
Fundamental Research Funds for the Central Universities
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献