Expanding the potential of biosensors: a review on organic field effect transistor (OFET) and organic electrochemical transistor (OECT) biosensors

Author:

Niu Yue,Qin Ze,Zhang Ying,Chen Chao,Liu Sha,Chen HuORCID

Abstract

Abstract Organic electronics have gained significant attention in the field of biosensors owing to their immense potential for economical, lightweight, and adaptable sensing devices. This review explores the potential of organic electronics-based biosensors as a revolutionary technology for biosensing applications. The focus is on two types of organic biosensors: organic field effect transistor (OFET) and organic electrochemical transistor (OECT) biosensors. OFET biosensors have found extensive application in glucose, DNA, enzyme, ion, and gas sensing applications, but suffer from limitations related to low sensitivity and selectivity. On the other hand, OECT biosensors have shown superior performance in sensitivity, selectivity, and signal-to-noise ratio, owing to their unique mechanism of operation, which involves the modulation of electrolyte concentration to regulate the conductivity of the active layer. Recent advancements in OECT biosensors have demonstrated their potential for biomedical and environmental sensing, including the detection of neurotransmitters, bacteria, and heavy metals. Overall, the future directions of OFET and OECT biosensors involve overcoming these challenges and developing advanced devices with improved sensitivity, selectivity, reproducibility, and stability. The potential applications span diverse fields including human health, food analysis, and environment monitoring. Continued research and development in organic biosensors hold great promise for significant advancements in sensing technology, opening up new possibilities for biomedical and environmental applications.

Funder

National Nature Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Songshan Lake Materials Laboratory

National Natural Science Foundation of China

Basic Research Program of Guangzhou

Climbing Program

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3