Recent advances of metal fluoride compounds cathode materials for lithium ion batteries: a review

Author:

Gao Yanshen,Li Jiaxin,Hua Yumeng,Yang Qingshan,Holze RudofORCID,Mijowska Ewa,Chu Paul K,Chen XuechengORCID

Abstract

Abstract As the most successful new energy storage device developed in recent decades, lithium-ion batteries (LIBs) are ubiquitous in the modern society. However, current commercial LIBs comprising mainly intercalated cathode materials are limited by the theoretical energy density which cannot meet the high storing energy demanded by renewable applications. Compared to intercalation-type cathode materials, low-cost conversion-type cathode materials with a high theoretical specific capacity are expected to boost the overall energy of LIBs. Among the different conversion cathode materials, metal fluorides have become a popular research subject for their environmental friendliness, low toxicity, wide voltage range, and high theoretical specific capacity. In this review, we compare the energy storage performance of intercalation and conversion cathode materials based on thermodynamic calculation and summarize the main challenges. The common conversion-type cathode materials are described and their respective reaction mechanisms are discussed. In particular, the structural flaws and corresponding solutions and strategies are described. Finally, we discussed the prospective of metal fluorides and other conversion cathode materials to guide further research in this important field.

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3