Exciton dynamics in 2D organic semiconductors

Author:

Sharma Ankur,Hasan Md MehediORCID,Lu Yuerui

Abstract

Abstract Two-dimensional (2D) semiconducting materials have been studied extensively for their interesting excitonic and optoelectronic properties arising from strong many-body interactions and quantum confinement at 2D limit. Most of these materials have been inorganic, such as transition metal dichalcogenides, phosphorene, etc. Organic semiconductor materials, on the other hand been investigated for their excellent electrical conductivity and low dielectric coefficients for similar applications in the thin film or bulk material phase. The lack of crystallinity in the thin film and bulk phases has led to ambiguity over the excitonic and electronic/optical band gap characteristics. The recent emergence of 2D organic materials has opened a new domain of high crystallinity and controlled morphology, allowing for the study of low-lying excitonic states and optoelectronic properties. They have been demonstrated to have different excitonic properties compared with the Wannier–Mott excitons in inorganic 2D materials. Here we present our recent experimental observations and analysis of 2D organic semiconductor materials. We discuss the role of high-crystalline and morphology-controlled growth of single-crystalline materials and their optoelectronic properties. The report explains the Frenkel (FR) and charge-transfer (CT) excitons and subsequent light emission and absorption properties in organic materials. The true nature of low-lying excitonic states, which arises from the interaction between CT and FR excitons, is experimentally studied and discussed to reveal the electronic band structure. We then discuss the pure FR behaviour we observed in J–type aggregated organic materials leading to coherent superradiant excitonic emissions. The supertransport of excitons within the organic materials, facilitated by their pure FR nature, and the delocalization of excitons over a large number of molecules are also demonstrated. Finally, we discuss the applications and our vision for these organic 2D materials in fast organic light-emitting diodes, high-speed excitonic circuits, quantum computing devices, and other optoelectronic devices.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3