Electromagnetic-thermal-mechanical behaviors of a no-insulation double-pancake coil induced by a quench in the self field and the high field

Author:

Liu Donghui,Li Dongke,Zhang Weiwei,Yong HuadongORCID,Zhou Youhe

Abstract

Abstract High-temperature superconducting double-pancake (DP) coils wound by the no-insulation (NI) approach have been proved to have a high thermal stability and a self-protecting ability. This paper mainly studies the effect of a quench of one pancake coil on the electromagnetic-thermal-mechanical behaviors of an NI DP coil in the self field and the high field. An electromagnetic-thermal coupling quench model is used to calculate the distributions of current, temperature and electromagnetic field in the coil, and then a three-dimensional homogeneous mechanical model is built to analyze the changes in strain and stress during a quench by considering the distributions of thermal strain and Lorentz force of the coil. The results indicate that the obvious increase in circumferential current and radial current density in the bottom pancake coil is induced by a quench of the top pancake coil due to the electromagnetic coupling effect in the self field and the high field, and that the DP coil still has a negative coil voltage during a quench in different fields. Although the bottom pancake coil has a large circumferential current, the mechanical deformation of the DP coil during a quench is mainly caused by the temperature rise in the self field. The thermal expansion of the top pancake coil has a remarkable effect on the mechanical behaviors of the bottom pancake coil. Moreover, the DP coil has the same temperature rise and mechanisms of bypass current in the self field and the high field. However, the mechanical deformation of the DP coil is based on the combined effects of temperature rise and Lorentz force in the high field. It can be found that the values of the hoop and axial stresses are affected by a large electromagnetic stress.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3