Effects of defects and surface roughness on the vortex penetration and vortex dynamics in superconductor–insulator–superconductor multilayer structures exposed to RF magnetic fields: numerical simulations within TDGL theory

Author:

Wang Qing-Yu,Xue CunORCID,Dong ChaoORCID,Zhou You-He

Abstract

Abstract Vortex penetration and vortex dynamics are significantly important to superconducting devices, for example, the superconducting cavities, since vortex motions will create substantial dissipation. In experiments, different kinds of defects as well as different degrees of surface roughness were observed. By considering these in superconductor–insulator–superconductor (SIS) structures, vortex penetration and vortex dynamics are very complex due to their interactions with defects and the influence of surface roughness, especially for radio-frequency (RF) magnetic fields, which are quite different from ideal defect-free SIS multilayer structures. In this paper, within the Ginzburg–Landau theory, we perform numerical simulations to study the effects of nanoscale defects, surface roughness, and cracks in the coating layer on the vortex penetration and superheating field in Nb3Sn–I–Nb multilayer structures exposed to a quasi-static magnetic field. The validation of the numerical simulations is verified by good consistency with previous theoretical results in ideal defect-free SIS multilayer and single Nb structures. Furthermore, we explore the vortex dynamics and induced voltages in SIS multilayer structures exposed to RF magnetic fields for both ideal defect-free structures and real situations that include surface roughness. Our numerical simulations indicate that, unlike the quasi-static case, the advantage of SIS multilayer structures over a single Nb structure depends on the degree of surface roughness as well as the frequency and amplitude of the RF magnetic field. The results of this paper provide deep insight to evaluate the actual performance-limiting characteristics of next-generation superconducting RF cavities with different proposed candidate materials, which are quite susceptible to nonideal surfaces.

Funder

Research Funds for the Central Universities

National Natural Science Foundation of China

Strategic Priority Research Program of Chinese Academy of Sciences

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3