Abstract
Abstract
We propose a superconducting spin valve based on a Josephson junction with B20-family magnetic metal as a barrier material. Our analysis shows that the states of this element can be switched by reorienting the intrinsic non-collinear magnetization of the spiral magnet. This reorientation modifies long-range spin-triplet correlations and thereby strongly influences the critical Josephson current. Compared to superconducting spin valves proposed earlier, our device has the following advantages: (a) it contains only one barrier layer, which makes it easier to fabricate and control; (b) its ground state is stable, which prevents uncontrolled switching; (c) it is compatible with devices of low-T Josephson electronics. This device may switch between two logical states which exhibit two different values of critical current, or its positive and negative values. I.e. 0-π switch is achievable on a simple Josephson junction.
Funder
Ministry of Science and Higher Education of the Russian Federation
Mirror Labs of HSE
Russian Foundation for Basic Research
Subject
Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献