Enhancement of electro-mechanical behaviors in RE–Ba–Cu–O composite superconducting tapes with laser slit edges

Author:

Guo Chunjiang,Chen Sikan,Liu XiaoORCID,Shi Jiangtao,Wu Yue,Cheng Chunsheng,Zhu JiaminORCID,Zhang Zhiwei,Liu FangORCID,Li XiaofenORCID,Zhao YueORCID

Abstract

Abstract The slit technique is an essential process for narrowing the second-generation high-temperature superconducting (2G-HTS) tapes. It is still very challenging to eliminate edge defects introduced during slitting. In this work, we developed a set of reel-to-reel laser slit (LS) equipment for narrowing 2G-HTS tapes using a femtosecond infrared laser. In comparison with the commonly used mechanical slit (MS) technique, the LS technique produced no cracks at the tape edges. Electro-mechanical behaviors of 2G-HTS tapes with MS and LS edges were compared in liquid nitrogen conditions. The results of the uniaxial tensile tests showed only a minor difference in irreversible tensile stress/strain of the two kinds of tapes. However, uniaxial tensile fatigue tests showed that the critical current (I c) retention of the LS tapes was about 14% higher than that of the MS tapes after 104 cycles (@ 77 K, σ max = 0.8σ y, and a stress ratio of 0.1). Moreover, U-Spring compressive tests revealed that no irreversible I c degradation occurred on the LS tapes under compressive strain up to −0.8%, with high reproducibility. On the contrary, the irreversible compressive strains of the MS tapes were rather scattered, ranging from −0.75% to −0.2%. Enhancement of electro-mechanical behaviors is strongly linked to fewer edge defects in the LS tapes. This research demonstrates significant advantages of the LS technique over the conventional MS technique, showing its promising prospects for demanding applications.

Funder

Science and Technology Commission of Shanghai Municipality

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3