First demonstration of high current canted-cosine-theta coils with Bi-2212 Rutherford cables

Author:

Garcia Fajardo LORCID,Shen TORCID,Wang XORCID,Myers C,Arbelaez DORCID,Bosque E,Brouwer LORCID,Caspi S,English L,Gourlay S,Hafalia A,Martchevskii MORCID,Pong I,Prestemon S

Abstract

Abstract Future high energy physics colliders could benefit from accelerator magnets based on high-temperature superconductors, which may reach magnetic fields of up to 45 T at 4.2 K, twice the field limit of the two Nb-based superconductors. Bi2Sr2CaCu2O8-x (Bi-2212) is the only high-T c cuprate material available as a twisted, multifilamentary and isotropic round wire. However, it has been hitherto unclear how an accelerator magnet can be fabricated from Bi-2212 round wires and whether high field quality can be achieved. This paper reports on the first demonstration of high current Bi-2212 coils using Rutherford cable based on a canted-cosine-theta (CCT) design and an overpressure processing heat treatment. Two Bi-2212 CCT coils, BIN5a and BIN5b, were made from a nine-strand Rutherford cable. Their electromagnetic design is identical, but they were fabricated differently: both coils underwent heat treatment in their aluminum–bronze mandrels, but unlike BIN5a that was impregnated with epoxy in its reaction mandrel, the conductor of BIN5b was transferred to a 3D printed Accura Bluestone mandrel after the heat treatment, a process attempted here for the first time, and was not impregnated. BIN5a reached a peak current of 4.1 kA with a self-field of 1.34 T in the bore. This corresponds to a wire engineering current density (J e) of 912 A mm−2, which is two times that of BIN2-IL, a previous Bi-2212 CCT coil fabricated at LBNL, which used a six-around-one cable processed with the conventional 1 bar pressure melt processing. On the other hand, BIN5b reached 3.1 kA. The coils exhibited no quench training. All the quenches were thermal runaways that occurred at the same location. In addition, we report on the field quality and ramp-dependent hysteresis measurements taken during the test of BIN5a at 4.2 K. Overall, our results demonstrate that the CCT technology is a route that should be further investigated for making high field, potentially quench training free dipole magnets with Bi-2212 cables.

Funder

Lawrence Berkeley National Laboratory

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3