Development and testing of a three-period, subsize 2G AIMI MgB2 planar undulator

Author:

Garg TORCID,Rochester J,Majoros MORCID,Kovacs C,Peng X,Rindfleisch M,Xue SORCID,Tomsic M,Doll D,Collings E W,Sumption M DORCID

Abstract

Abstract Compared to Nb3Sn- and NbTi-wound superconducting undulators (SCUs), MgB2-wound SCUs are of interest for future electron synchrotron beam light sources owing to their higher temperature operating margin and associated stability. In this study, a three-period undulator consisting of twelve racetrack coils wound with 2nd generation (2 G) multifilamentary advanced-internal-magnesium-infiltration MgB2 strands were fabricated and tested in liquid and gaseous helium (He) over a temperature range of 4.2 K–20 K. The coil winding cross sections (in each coil) were 5 mm wide and 4.8 mm thick. At 4.2 K, a critical current (I c) of 325.7 Amps produced a maximum undulator bore field of 1.19 T. It should be noted that the short, 3-period nature of the coil led to an asymmetry in the field profile (the maximum positive field was 1.19 T, the maximum negative was −0.25 T), suggesting a peak field of 0.72 T in the absence of end effects. Finite element modeling (FEM) results of simulations for a one meter long undulator of otherwise identical design gave 0.85 T (larger because of higher currents enabled by the lower field). But in any case, the I c value coil reached is 94% of that of the short sample (dictated by the 1.19 T positive field for the coil as tested). FEM was performed to study the magnetic field profile, which was validated experimentally. The magnetic field was measured using a Hall probe which was translated along the beam axis during measurement to explore the spatial field variation along the beam travel direction. The spatially alternating field was asymmetric, and the maximum field was more prominent in the positive direction than in the negative direction, the difference being due to broken symmetry, that is, short coil end effects. In this work, we show useful fields are possible for MgB2 undulators; the use of such conductors can allow a larger thermal margin and enable conduction-cooled operation.

Funder

DOE

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3