Stable implicit numerical algorithm of time-dependent Ginzburg–Landau theory coupled with thermal effect for vortex behaviors in hybrid superconductor systems

Author:

Wang Qing-Yu,Xue CunORCID

Abstract

Abstract Hybrid multi-superconducting structures exist in a variety of superconducting devices, such as superconductor–insulator–superconductor multilayer structure in superconducting radio-frequency cavities, bilayer structures in superconducting electronic devices, and superconducting wires. Investigating the vortex dynamics at microscopic scale is crucial for applications of hybrid superconducting structures.The time-dependent Ginzburg–Landau (TDGL) theory is a powerful tool for describing the vortex dynamics in superconductors through the order parameter ψ and vector potential A. However, the difference in order parameter ψ , coherence length ξ , and GL parameters κ among the components of hybrid systems will bring significant challenges to numerical simulation of TDGL equations. Meanwhile, the energy dissipation associated with vortex motion necessitates considering the thermal effects on vortex dynamics. In this paper, we introduce an efficient, stable, and parallel implicit finite-difference algorithm, implemented on GPU, for coupling the TDGL and thermal diffusion equations for hybrid structures. Linearization of nonlinear source terms is applied to TDGL-II to enhance the stability of algorithm. The iterative Jacobi method is applied to the generalized TDGL-I. Alternating direction implicit methods combined with tridiagonal matrix method or CTDMA are used to solve TDGL-II and heat diffusion equations with different boundary conditions. This algorithm enables us to explore the vortex dynamics with associated thermal effects of mesoscopic large hybrid multi-superconducting structures within reasonable amounts of computational time. Our approach aids in revealing and understanding the underlying physical mechanisms behind the collective response of vortices, and contributes to the mastery, adjustment, and optimization of superconductivities in hybrid structures.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3