Time-varying magnetic field induced electric field across a current-transporting type-II superconducting loop: beyond dynamic resistance effect

Author:

Geng JianzhaoORCID,Brooks Justin MORCID,Bumby Chris W,Badcock Rodney AORCID

Abstract

Abstract The emergence of a potential drop across a current-transporting type-II superconducting loop under a perpendicular oscillating magnetic field is revealed. We have derived analytical formulae to describe the effect under DC transport current in 1D, based on Bean’s critical state model. The analytical formulae are verified by a finite element model. To exploit this effect, we have developed a transformer-like ‘resistive switch’, and experimentally observed a switching effect. This work demonstrates a physically important general insight of the interaction between DC transport currents and time-varying magnetic fields in type-II superconducting loops, which extends beyond the well-known ‘dynamic resistance’ effect. It also provides a useful view on the interaction between a ‘transport-current’ and a ‘screening-current’ in the superconductor. The resulting demonstrated switch has the potential to be used in a variety of applications including superconducting rectifiers, fault current limiters, and superconducting magnetic energy storages.

Funder

Royal Society of New Zealand

MBIE NZ

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3