Systematic analysis of the quench process performance and simulation of the 9.4 T-800 mm whole-body MRI magnet

Author:

Chen Shunzhong,Wang Lei,Zhang ZiliORCID,Wang Yaohui,Wang Hui,Cheng Junsheng,Dai Yinming,Wang Qiuliang

Abstract

Abstract In 2021, the Institute of Electrical Engineering, Chinese Academy of Sciences successfully reached 9.4 T in a whole-body magnetic resonance imaging (MRI) superconducting magnet with an inner diameter of 800 mm. In this study, a systematic analysis of both the real quench protection performance and a simulation are reported. The four successful quench protections during the entire energization process proved the feasibility of the ‘in-out-in’ quench protection protocol for a 9.4 T-800 mm superconducting magnet. The quench trigger sequence was shown to be adjusted by changing the heater thickness, which demonstrates the flexibility of the ‘in-out-in’ quench protection protocol to fit a different MRI magnet design. The high accuracy of the quench protection simulation method and code was confirmed through comparison of the simulation results with the real performance. Moreover, the limitations of the current quench protection and reference value to other MRI magnets were discussed. It is believed that this study will be useful to other research groups and promote the development of an extremely high-field whole-body MRI system.

Funder

NSFC

National Natural Science Foundation of China

Key Research Program of Frontier Sciences, CAS

Beijing Municipal Natural Science Foundation

Magnetic Resonance Union of Chinese Academy of Sciences

Key R&D Program of China

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3