Intensifying human-driven heatwaves characteristics and heat related mortality over Africa

Author:

Adigun PaulORCID,Abah Emmanuel OwoichoORCID,Ajileye Oluwaseun David

Abstract

Abstract Heatwaves in Africa are expected to increase in frequency, number, magnitude, and duration. This is significant because the health burden is only expected to worsen as heatwaves intensify. Inadequate knowledge of the climate’s impact on health in developing nations such as Africa makes safeguarding the health of vulnerable groups at risk challenging. In this study, we quantify possible roles of human activity in heatwave intensification during the historical period, and project the future risk of heat-related mortality in Africa under two Representative Concentration Pathways (RCP26) and (RCP60). Heatwaves are measured using the Excess Heat Factor (EHF); the daily minimum (Tn ) and maximum (Tx ) are used to compute the EHF index; by averaging Tx and Tn . Two heat factors, significance and acclimatization are combined in the EHF to quantify the total excess heat. Our results confirm the intensification of heatwaves across Africa in recent years is due anthropogenic activity (increase in greenhouse gas concentration and changes in land use). The Return event highlights the potential future escalation of heatwave conditions brought on by climate change and socioeconomic variables. RCP26 projects a substantial rise in heat-related mortality, with an increase from about 9000 mortality per year in the historical period to approximately 23 000 mortality per year at the end of the 21st century. Similarly, RCP60 showed an even more significant increase, with heat-related mortality increasing to about 43 000 annually. This study highlights the potentially growing risk of intensifying heatwaves in Africa under different emission scenarios. It projects a significant increase in heatwave magnitude, number, duration, frequency, and heat-related mortality. Africa’s low adaptive capacity will amplify the impact, emphasizing the need for emissions reduction and effective adaptation measures.

Publisher

IOP Publishing

Reference64 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3