A review on realizing the modern optoelectronic applications through persistent photoconductivity

Author:

Sumanth ArigeORCID,Lakshmi Ganapathi KollaORCID,Ramachandra Rao M SORCID,Dixit TejendraORCID

Abstract

Abstract Optoelectronic devices are becoming increasingly important due to their compatibility with CMOS fabrication technology and their superior performance in all dimensions compared to currently available devices. Numerous modern applications are formulated based on various aspects of optoelectronic materials and devices, such as artificial intelligence, optical memory, optoelectronic synapses, humanoid-photodetectors, holography, solar cells, charge storage devices, bio-electronic devices, and so on. Persistent photoconductivity (PPC), an optoelectronic phenomenon that has piqued the scientific community’s interest, is a novel approach to these modern applications. In this article, we highlighted the use of PPC in a variety of emerging optoelectronic applications. PPC is a light-induced mechanism that persists after light excitation is terminated, i.e. the response does not stop immediately but remains available for a period of time. In recent years, the time duration over which the response after turning off the illumination is available has been proposed for a variety of applications. PPC has primarily been explored from a theoretical point of view, with the application component being largely ignored. Very recently, the scientific community has started exploring the possible applications pertaining to PPC such as optoelectronic synapses, holography, optical memory, bioelectronics, and artificial intelligence. Depending on the nature of the material and the type of model used in the application, a variety of mechanisms can be used to modulate the charge trapping and de-trapping methodologies for a specific application. This topical review summarizes the origins of PPC, its control mechanism, and recent advances in a variety of materials such as metal oxides, superconductors, nanofibers, 2D-semiconductors, alloys, nitrides, organic materials, topological insulators, and so on. In addition, the paper has carefully explored the development of next-generation optoelectronic applications designed for industry 4.0 leveraging the PPC phenomenon.

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3