Quantifying the thermal effect and methyl radical production in nanosecond repetitively pulsed glow discharges applied to a methane-air flame

Author:

M Alkhalifa AmmarORCID,Di Sabatino FrancescoORCID,A Steinmetz ScottORCID,Pfaff SebastianORCID,Huang Erxiong,H Frank JonathanORCID,J Kliewer ChristopherORCID,A Lacoste DeannaORCID

Abstract

Abstract In this work, we investigated non-equilibrium plasma produced by nanosecond repetitively pulsed glow discharges applied across a lean premixed methane-air flame. The flame is stationary, axisymmetric, and laminar. The discharges are applied on the symmetry axis crossing the reactant gases, flame front, and product gases, allowing phase-locked averaged measurements and comparisons with axisymmetric numerical simulations. The thermal effect and methyl radical production are quantified in the discharge in the reactant gas region. One-dimensional, two-beam, hybrid, femtosecond-picosecond, coherent anti-Stokes Raman scattering is used to acquire spatial and temporal profiles of temperature and oxygen-to-nitrogen concentration ratio. Photo-fragmentation laser-induced fluorescence is used to acquire quantitative two-dimensional profiles of methyl radicals in the discharge providing the first quantitative imaging of methyl produced ahead of a flame by plasma-induced methane dissociation. The spatial profiles of temperature and oxygen-to-nitrogen concentration ratio are in steady state, indicating that individual discharges have an insignificant heating effect. Upper and lower bounds of the produced mole fraction of methyl radicals in the plasma are obtained due to uncertainties in the collisional quenching rates of excited state methylidyne radicals in the plasma. The discharges produce a maximum of 600–1100 ppm of methyl radicals upstream of the flame front within 25 ns. This amount is similar to the predicted methyl mole fraction for the flame without plasma and thus represents a significant chemical perturbation to the reactants upstream of the flame front. The produced methyl follows an exponential decay in the first microsecond after the discharge with a decay constant of 8 µs close to the flame, and 0.8 µs further from the flame. The decay then deviates from the exponential curve and the methyl persists for tens of microseconds. The results suggest that for the tested configuration, the thermal effect of individual discharges through fast gas heating is negligible, while active chemical species are produced in large quantities in the reactant gases, upstream of the flame front.

Funder

Fusion Energy Sciences

King Abdullah University of Science and Technology

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3