Formation of an extended defect cluster in cuprous oxide

Author:

Aggarwal Garima,Chawla Sushobhita,Singh Akhilender Jeet,Alampara NawafORCID,Monder Dayadeep S,Balasubramaniam K RORCID

Abstract

Abstract Intrinsic defects and defect clusters play an important role in the room-temperature transport of cuprous oxide. Neutralization of these defects by doping and/or modifying the synthesis process is essential to improve the room-temperature hole mobility in cuprous oxide. Toward this end, we annealed polycrystalline cuprous oxide under Cu-rich conditions, which led to the neutralization of the intrinsic acceptor defect. The concentration of both the acceptor defects ( V Cu and V Cu split ) that are already present, reduces by four to five orders of magnitude. This is in accordance with the amount of possible Cu incorporation under different annealing conditions, indicating the backfilling of a large fraction of the Cu vacancies. Unforeseeably, the experimental conditions lead to the creation of yet another higher-order extended defect (3 V Cu + 2Cu i ) with a defect level at ≈0.5 eV above the valence band. The formation of such a defect is also indirectly suggested by the analysis of carrier concentration vs. temperature data and first-principles calculations. Such singly ionized higher-order defects with a possibly higher capture cross-section act as more effective traps resulting in reduced hole mobility.

Funder

Science and Engineering Research Board

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3