Abstract
Abstract
Time-resolved Kerr microscopy (TRSKM) has been used to explore the small amplitude picosecond magnetization dynamics induced by spin–orbit torques in a Ta(4 nm)/Co40Fe40B20(1 nm)/MgO(1.6 nm)/Ta(1 nm) Hall bar structure. The time dependent polar magneto optical Kerr effect was recorded following injection of a current pulse of 70 ps duration. Macrospin simulations provide a reasonable description of the precession and a transient background response as the field strength and current polarity are varied, while confirming that the in-plane spin–orbit torque is dominant within this system. Increasing the current density within the simulations leads to coherent magnetization reversal. Inclusion of a modest in-plane bias field is found to reduce both the switching current and the time required for switching. The orientation of the in-plane field relative to the direction of the current determines whether the magnetization can be switched backwards and forwards by current pulses of the same or opposite polarity.
Funder
National Science Foundation
Engineering and Physical Sciences Research Council
Subject
Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献