Abstract
Abstract
We investigated femto- and picosecond-time magnetization dynamics in a ferromagnetic Ni80Fe20 film with varying thicknesses (wedge-shaped film). We observed that the thickness gradient strongly affects the magnetic moment distribution, causing a magnetization reorientation from in-plane to out-of-plane, and formatting a stripe domain (SD) at the thicker end of the wedge. The magnetization dynamics measurements reveal that the part of the film displaying SDs follows a substantially faster demagnetization and magnetization recovery and smaller magnetization quenching compared to the in-plane domain film. The experiments and micromagnetic simulations support that the decrease in relaxation time is caused by a magnetic anisotropy of the films introduced by SD formation. Our results point out that the micromagnetic structure plays an important role in the magnetization dynamics in ferromagnetic films after optically triggered demagnetization.
Funder
Fundamental Research Funds for the Central Universities
Natural Science Foundation of Shandong Province
National Natural Science Foundation of China
BMBF
Jülich Short-pulse Particle Acceleration and Radiation Center
China Postdoctoral Science Foundation
China and Germany Postdoctoral Exchange Program
Subject
Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献