Abstract
Abstract
We consider the heat equation for monolayer two-dimensional materials in the presence of heat flow into a substrate and Joule heating due to electrical current. We compare devices including a nanowire of constant width and a bow tie (or wedge) constriction of varying width, and we derive approximate one-dimensional heat equations for them; a bow tie constriction is described by the modified Bessel equation of zero order. We compare steady state analytic solutions of the approximate equations with numerical results obtained by a finite element method solution of the two-dimensional equation. Using these solutions, we describe the role of thermal conductivity, thermal boundary resistance with the substrate and device geometry. The temperature in a device at fixed potential difference will remain finite as the width shrinks, but will diverge for fixed current, logarithmically with width for the bow tie as compared to an inverse square dependence in a nanowire.
Subject
Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献