Abstract
Abstract
Electric-field grading by dielectric permittivity gradient devices is an effective way of enhancing the insulation performance. In situ electric-field-driven assembly is an advanced method for the fabrication of insulating devices with adaptive permittivity gradients; however, there is no theoretical guidance for its use in design. We develop an analytical model for the spatiotemporal permittivity of an uncured-composite device in an AC electric field and investigate the coupling effects between the in situ assisted electric field and rod-like filler self-assembly in three devices: a pin-flat insulator, a basin insulator, and a silicone-gel-insulated gate bipolar transistor. Our model is based on optical images and dielectric permittivity monitoring, thus avoiding complicated electrodynamic calculations. The electric-field uniformity follows a U-shaped curve with assisted-voltage application time. We also find a combination of experimental parameters that constitutes an optimal tradeoff between internal and surface electric-field uniformities. This work establishes a theoretical design framework to optimize the performance (e.g. flashover voltage and breakdown strength) of a composite device.
Funder
Shenzhen fundamental research and discipline layout project
National Natural Science Foundation of China
Subject
Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献