Optical properties of metamorphic type-I InAs1−xSbx/Aly In1−y As quantum wells grown on GaAs for the mid-infrared spectral range

Author:

Repiso Eva,Broderick Christopher AORCID,de la Mata Maria,Arkani Reza,Lu Qi,Marshall Andrew R J,Molina Sergio I,O’Reilly Eoin P,Carrington Peter JORCID,Krier Anthony

Abstract

Abstract We analyse the optical properties of InAs1−x Sb x /Al yIn1−yAs quantum wells (QWs) grown by molecular beam epitaxy on relaxed Al yIn1−yAs metamorphic buffer layers (MBLs) using GaAs substrates. The use of Al yIn1−yAs MBLs allows for the growth of QWs having large type-I band offsets, and emission wavelengths  >3 m. Photoluminescence (PL) measurements for QWs having Sb compositions up to x  =  10% demonstrate strong room temperature PL up to 3.4 m, as well as enhancement of the PL intensity with increasing wavelength. To quantify the trends in the measured PL we calculate the QW spontaneous emission (SE), using a theoretical model based on an eight-band Hamiltonian. The theoretical calculations, which are in good agreement with experiment, identify that the observed enhancement in PL intensity with increasing wavelength is associated with the impact of compressive strain on the QW valence band structure, which reduces the band edge density of states making more carriers available to undergo radiative recombination at fixed carrier density. Our results highlight the potential of type-I InAs1−x Sb x /Al yIn1−yAs metamorphic QWs to address several limitations associated with existing heterostructures operating in the mid-infrared, establishing these novel heterostructures as a suitable platform for the development of light-emitting diodes and diode lasers.

Funder

H2020 Marie Skłodowska-Curie Actions

Junta de Andalucía

Ministerio de Economía y Competitividad

Royal Academy of Engineering

National University of Ireland

Engineering and Physical Sciences Research Council

Science Foundation Ireland

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3