Abstract
Abstract
We demonstrate that electrical charges are stored in the bilayer junctions of Al and Bi–Cu–S alloys. The junctions exhibit interfacial resistance switching, which is caused by a spontaneous production of high resistivity compounds at the interface and their electrochemical dissolution under a voltage bias. The charge storage results from the redox reactions that are responsible for the resistance switching. In contrast to conventional secondary batteries, the storing capability increases as the temperature is lowered from room temperature to 77 K, where the charges are released in a time scale nearly on the order of hours. The charging and discharging are thereby indicated not to rely on ionic transport. The battery effect is reversible in polarity. Storage characteristics are modified when Cu in the ternary alloy is replaced with Ag or Ni in a similar manner to the way the properties of the interfacial resistance switching are altered.
Subject
Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献