Plasma–graphene interactions: combined effects of positive ions, vacuum-ultraviolet photons, and metastable species

Author:

Vinchon P,Glad X,Bigras G Robert,Sarkissian A,Martel R,Stafford LORCID

Abstract

Abstract This study compares the impact of different plasma environments on the damage formation dynamics of polycrystalline monolayer graphene films on SiO2/Si substrates and investigates the combined effects often observed in low-pressure argon plasmas. After careful characterization of the discharge properties by Langmuir probes and optical absorption spectroscopy, three operating conditions were selected to promote graphene irradiation by either positive ions, metastable species, or vacuum-ultraviolet (VUV) photons. In all cases, hyperspectral Raman imaging of graphene reveals plasma-induced damage. In addition, defect generation is systematically slower at grain boundaries (GBs) than within the grains, a behavior ascribed to a preferential self-healing of plasma-induced defects at GBs. The evolution of selected Raman band parameters is also correlated with the energy fluence provided to the graphene lattice by very-low-energy ions. From such correlation, it is shown that the presence of VUV photons enhances the defect formation dynamics through additional energy transfer. On the other hand, the presence of metastable species first impedes the defect generation and then promotes it for higher lattice disorder. While this impediment can be linked to an enhanced defect migration and self-healing at nanocrystallite boundaries in graphene, such effect vanishes in more heavily-damaged films.

Funder

Fonds de Recherche du Québec - Nature et Technologies

Canada Research Chairs

PRIMA-Québec

Natural Sciences and Engineering Research Council of Canada

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In Plasma ion beam analysis of polymer layer and adsorbed H monolayer etching;Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms;2024-09

2. In-plasma analysis of plasma–surface interactions;Review of Scientific Instruments;2023-08-01

3. Postgrowth modification of monolayer graphene films by low-pressure diborane-argon plasma;Journal of Vacuum Science & Technology A;2021-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3