Active damping of ultrasonic receiving sensors through engineered pressure waves

Author:

Dixon SteveORCID,Kang Lei,Feeney AndrewORCID,Somerset William E

Abstract

Abstract Transducers for ultrasonic sensing and measurement are often operated with a short burst signal, for example a few cycles at a specific excitation voltage and frequency on the generating transducer. The vibration response of a narrowband transducer in detection is usually dominated by resonant ringing, severely affecting its ability to detect two or more signals arriving at the receiver at similar times. Prior researchers have focused on strategies to damp the ringing of a transducer in transmission, to create a temporally short output pressure wave. However, if the receiving transducer is narrowband, the incident pressure waves can create significant ringing of this receiving transducer, irrespective of how temporally short the incident pressure waves are on the receiving transducer. This can reduce the accuracy of common measurement processes, as signals are temporally long and multiple wave arrivals can be difficult to distinguish from each other. In this research, a method of damping transducers in reception is demonstrated using a flexural ultrasonic transducer (FUT). This narrowband transducer can operate effectively as a transmitter or receiver of ultrasound, and due to its use in automotive applications, is the most common ultrasonic transducer in existence. An existing mathematical analog for the transducers is used to guide the design of an engineered pressure wave to actively damp the receiving FUT. Experimental measurements on transducers show that ultrasonic receiver resonant ringing can be reduced by 80%, without significantly compromising sensitivity and only by using a suitable driving voltage waveform on the generating transducer.

Funder

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3