Phase formation and electrical properties of reactively sputtered Fe1−x O thin films

Author:

Evertz S,Nicolin N,Cheng N,Primetzhofer DORCID,Best J PORCID,Dehm G

Abstract

Abstract Wüstite, Fe1−x O, is a crucial phase for the transition to CO2-free steel manufacturing as well as promising for electrochemical applications such as water splitting and ammonia synthesis. To study the effect of interfaces in these applications, thin-film model systems with defined interfaces are ideal. Previous studies lack a description of the growth mechanism to obtain Fe1−x O thin films. Here, we investigate the phase formation of metastable Fe1−x O during reactive magnetron sputtering while systematically varying the O2/Ar flow ratio from 1.8% to 7.2% and the pressure–distance product between 3.5 and 7.2 Pa cm. If bulk diffusion is minimized, thin films containing 96 vol.% wüstite and 4 vol.% Fe as impurity phase were achieved. Therefore, the wüstite phase formation appears to be surface diffusion dominated. To reveal the influence of impurity phases in wüstite on the electrical resistivity, systematic electrical resistivity measurements while cooling in situ were performed for the first time. The electrical resistivity was lower than that of single crystals of the respective iron oxides. This is attributed to the formation of Fe-rich layers at the substrate-film interface, which serve as additional conduction paths.

Funder

European Research Council

Uppsala Universitet

Horizon 2020 Framework Programme

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3