A novel frog-like meta-structure with linkage mechanism for low-frequency vibration isolation

Author:

Li Xiaoyun,Wang Jixiao,Chai YijunORCID,Yang XiongweiORCID,Wang Chunming,Li Yueming

Abstract

Abstract Structures with linkage mechanism, which could be widely seen in engineering, usually need to bear a certain load and exhibit ideal vibration isolation performance. One of the key factors affecting the mechanical and vibration properties is the connection behavior of the linkage mechanism. To clarify its influence on the vibration characteristics, a novel frog-like meta-structure by introducing a linkage mechanism into the conventional locally resonant metamaterial with a mass-spring resonator is proposed in the present paper, in which the linkage connection is considered as three types of hinged, fixed and elastic, respectively. The equivalent dynamic model of the meta-structure is established theoretically to calculate the effective material properties, which is then validated numerically through band gap and vibration analysis. The results show that the hinged linkage offers equivalent mass and free vertical displacement, while the fixed linkage provides supporting stiffness, shifting the band gap towards higher frequencies. An appropriate elastic connection can enhance the ‘spring-vibrator’ effect, which in turn can significantly expand the low-frequency vibration suppression range of the structure. Experiments are also conducted corresponding to the different linkage mechanisms, and the dynamic model is verified. This study could provide a new idea for promoting the application of the locally resonant meta-structure with a linkage mechanism in the field of low-frequency vibration isolation.

Funder

Key Projects of the Civil Aviation Joint Fund of the National Natural Science Foundation of China

National Natural Science Foundation of China

Postdoctoral Science Foundation of China

Innovative Scientific Program of CNNC

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3