Modelling and experimental investigations of composition-dependent heat and mass transfer during Cu–Ni alloy nanoparticle synthesis in a transferred arc helium plasma

Author:

Dhamale G DORCID,Das Subrat,Murphy Anthony BORCID,Kandada Satya P R,Balasubramanian CORCID,Ghorui SORCID

Abstract

Abstract In the synthesis of alloy nanoparticles (NPs) via arc evaporation and fast quenching, the composition of the synthesized NPs differs significantly from that of the precursor. The properties of the NPs formed following evaporation of a copper–nickel anode by a helium arc are investigated using a nucleation model coupled to the thermal and flow fields derived from a magneto-hydrodynamic simulation of the arc, and experimentally. Results are obtained for three different Cu:Ni precursor compositions, 10:90, 50:50 and 90:10 at%. The synthesized particles are spherical with different size distributions and have a higher concentration of Cu than the precursor in all three cases, in contrast to previous observations, but in accordance with the predictions of the model. Emission spectroscopic measurements of copper and nickel lines indicate that the concentration of atomic copper in the plasma region near the anode is much higher than that of the nickel, in accordance with the predictions of the model. The higher vapour pressure of copper compared to nickel, and its higher activity in the alloy precursor (anode), immersed in a self-consistent thermal and flow field maintained by the transferred arc are found to play a critical role. The thermodynamic, radiative and transport properties of the helium plasma contaminated with evaporated precursor are important in determining the thermal and flow fields.

Funder

Bhabha Atomic Research Centre

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3