Low-current gliding DC discharge in high-speed flows

Author:

Kornev K NORCID,Logunov A A,Dvinin S AORCID

Abstract

Abstract A low-current gliding discharge (current range 1–5 A) in high-speed air flows of 100–250 m s−1 was experimentally studied. A high-voltage direct current source with a maximum voltage of 4.5 kV was used to create the discharge. The average electron concentration n e ∼ 1014 cm−3 and the plasma ionization degree were determined by measuring the Stark broadening of the hydrogen H β line (λ Hβ = 486.1 nm). The estimates of the electric field (E ∼ 100 V cm −1 ÷ 600 V cm−1) in the discharge positive column were found using time-synchronized high-speed video recordings and oscillograms. The gas rotational temperature T g = 7000–9500 K and the vibrational temperature T v = 7000–11 000 K were estimated using optical emission spectroscopy. Time-resolved spectroscopy is used to investigate the effective plasma channel spatial regions from which the N, NH, N2 +, O and OH molecules radiate. The difference of the obtained radii indicates the presence of a radial temperature gradient and inhomogeneous plasma composition in the discharge cross section. The possibility of using of gliding discharge to ignite hydrocarbon-air mixtures in the ramjet engines combustors has been experimentally demonstrated.

Funder

Russian Science Foundation

Theoretical Physics and Mathematics Advancement Foundation “BASIS“

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3