Industrial-scale production of high-quality graphene sheets by millstone grinders

Author:

Lv Peng,Li XiaoshiORCID,Zhang Zihan,Nie Biao,Wu Yiliang,Deng Ningqin,Tian He,Ren Tian-Ling,Wang GuanzhongORCID

Abstract

Abstract Graphene exhibits a variety of unprecedented innate properties and has sparked great interest in both fundamental science and regarding prospective commercial applications. To meet the ever-increasing demand for high-quality graphene sheets, an industrial-scale, reliable, environmental-friendly, low-cost production process is required. However, large-scale production high quality graphene remains elusive. Here we demonstrate a scalable mechanical cleavage method for large-quantity production of high quality large-area and few-layer graphene sheets by introducing a millstone grinding process. The average thickness of the graphene sheets is around 5 nm. This procedure is simpler than the state-of-the-art methods that allows for scalable preparation of graphene dispersion in hundreds of litres by mechanical cleavage of graphite, and the yield is 30%–40%. The size of the prepared graphene sheets can be tuneable from few micrometers to tens of micrometers by varying the dimension of raw graphite, which is larger than that produced by the state-of-the-art methods. Moreover, comparing to conductive agents, the conductivity of wafers containing graphene can be increased by one order of magnitude, suggesting a high potential of the prepared graphene sheets for the application as conductive agent in lithium battery cathodes. This allows the requirements of different sizes graphene sheets for industry applications in different fields.

Funder

Fundamental Research Funds for the Central Universities

National Key R&D Program

National Basic Research Program

Beijing Natural Science Foundation

National Natural Science Foundation

Beijing Innovation Center for Future Chip

Shenzhen Science and Technology Program

Young Elite Scientists Sponsorship Program by CAST

National Natural Science Foundation of China

National Basic Research Program of China

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3