Terahertz interface physics: from terahertz wave propagation to terahertz wave generation

Author:

Du Wanyi,Huang Yuanyuan,Zhou YixuanORCID,Xu XinlongORCID

Abstract

Abstract Terahertz (THz) interface physics as a new interdiscipline between the THz technique and condensed matter physics has undergone rapid development in recent years. In particular, the development of advanced materials, such as graphene, transitional metal dichalcogenides, topological insulators, ferromagnetic metals, and metamaterials, has revolutionized the interface field and further promoted the development of THz functional devices based on interface physics. Moreover, playing at the interface of these advanced materials could unveil a wealth of fascinating physical effects such as charge transfer, proximity effect, inverse spin-Hall effect, and Rashba effect with THz technology by engineering the charge, spin, orbit, valley, and lattice degrees of freedom. In this review, we start with a discussion of the basic theory of THz interface physics, including interface formation with advanced materials, THz wave reflection and transmission at the interface, and band alignment and charge dynamics at the interface. Then we move to recent progress in advanced materials from THz wave propagation to THz wave generation at the interface. In THz wave propagation, we focus on THz wave impedance-matching, Goos–Hänchen and Imbert–Fedorov shifts in THz region, interfacial modulation and interfacial sensing based on THz waves. In THz wave generation, we summarize ongoing coherent THz wave generation from van der Waals interfaces, multiferroic interfaces, and magnetic interfaces. The fascinating THz interface physics of advanced materials is promising and promotes novel THz functional devices for manipulating propagation and generation of THz waves at interfaces.

Funder

Natural Science Foundation of Shaanxi Province

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Reference211 articles.

1. On the propagation of electrodynamic waves along a wire;Sommerfeld;Ann. Phys. Chem. New Ed.,1899

2. Propagation of plane EM waves along a plane conducting surface;Zenneck;Ann. Phys.,1907

3. Goos–Hänchen and Imbert–Fedorov beam shifts: an overview;Bliokh;J. Opt.,2013

4. Surface states and rectification at a metal semi-conductor contact;Bardeen;Phys. Rev.,1947

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3