Broken edge spin symmetry induces a spin-polarized current in graphene nanoribbon

Author:

Ali ShahjadORCID,Ali Md EhesanORCID

Abstract

Abstract Zigzag graphene nanoribbons (ZGNRs) are known to possess spin moments at the hydrogen-terminated edge carbon atoms; thus, spin-polarized electron transmission is expected, while the current is longitudinally passed through the ZGNRs. However, in pristine ZGNRs, spin-polarized transmission is not observed due to symmetric anti-parallel distributions of the spin densities between the edges. Here, the hypothesis is that any physical or chemical process that breaks such anti-parallel spin symmetry can induce spin-polarized transmission in ZGNRs. In this work, we have established this proof-of-concept by depositing the trimethylenemethane (TMM) radical on 6ZGNRH and investigating the quantum transport properties by employing density functional theory in conjunction with the nonequilibrium Green’s function method. Although TMM has a high magnetic moment ( 2 μ B ), it does not induce magnetization in 6ZGNRH when TMM is physisorbed. However, during the chemisorption of TMM, it forms the π π bond with the 6ZGNRH in a particular geometric configuration, where the p z orbitals of carbon atoms of TMM have maximum overlap with the p z orbitals of carbon atoms of 6ZGNRH. The chemisorption of TMM transfers the spin moment to 6ZGNRH, which breaks the edge spin symmetry of pristine 6ZGNRH. The adsorption of the TMM radical results in transmission dips in the transmission spectra due to interference between localized states of TMM and 6ZGNRH states. This induces spin-polarized transmission with 60% spin-filtering efficiency at zero bias, which can further be enhanced up to 92% by applying a bias voltage of 1.0 V.

Funder

Science and Engineering Research Board

Council of Scientific and Industrial Research, India

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3