Abstract
Abstract
Two-dimensional spatially resolved absolute atomic oxygen densities are measured within an atmospheric pressure micro plasma jet and in its effluent. The plasma is operated in helium with an admixture of 0.5% of oxygen at 13.56 MHz and with a power of 1 W. Absolute atomic oxygen densities are obtained using two photon absorption laser induced fluorescence spectroscopy. The results are interpreted based on measurements of the electron dynamics by phase resolved optical emission spectroscopy in combination with a simple model that balances the production of atomic oxygen with its losses due to chemical reactions and diffusion. Within the discharge, the atomic oxygen density builds up with a rise time of 600 µs along the gas flow and reaches a plateau of 8 × 1015 cm−3. In the effluent, the density decays exponentially with a decay time of 180 µs (corresponding to a decay length of 3 mm at a gas flow of 1.0 slm). It is found that both, the species formation behavior and the maximum distance between the jet nozzle and substrates for possible oxygen treatments of surfaces can be controlled by adjusting the gas flow.
Funder
Deutsche Forschungsgemeinschaft
Subject
Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献