One-dimensional nanomaterials in lithium-ion batteries

Author:

Jaramillo-Cabanzo D F,Ajayi B PORCID,Meduri P,Sunkara M KORCID

Abstract

Abstract A lot of progress has been made in rechargeable lithium-ion battery (LIB) technology research in the last decade, even so, renewed developmental efforts must be pursued to better improve energy density, capacity retention and rate capability. This review discusses the role that one-dimensional (1D) nanomaterials can play towards development of next-generation LIBs. Electrode nanoengineering, interfacial kinetics and high-volume manufacturing are critical issues limiting energy density, electrochemical performance and material viability. These points are discussed, as are the advantages of deploying these nanomaterials in rechargeable LIB devices. Current data from literature is indicative of laboratory-scale success as these 1D nanomaterials display excellent capacity retention, high-rate capability and long cycle life emanating from high mechanical strength, resilience and short charge carrier diffusion distance. However, significant advances are required to translate these achievements into commercial scale deployment.

Funder

National Science Foundation

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Reference268 articles.

1. Building better batteries;Armand;Nature,2008

2. The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries;Sun;Adv. Mater.,2012

3. D.O.E. Battery500 Consortium to Spark EV Innovations: Pacific Northwest National Laboratory-led, 5-year $50M effort seeks to almost triple energy stored in electric car batteries

4. Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries;Lee;Nano Today,2011

5. Analytics, C. Web of Science Core Collection

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3