Carrier concentration mediated enhancement in thermoelectric performance of various polymorphs of hafnium oxide: a plausible material for high temperature thermoelectric energy harvesting application

Author:

Kumar Rajesh,Kumar Ramesh,Singh MukhtiyarORCID,Meena Deshraj,Vij Ankush

Abstract

Abstract The optimization of figure of merit by tuning carrier concentrations is an effective way to realize efficient thermoelectrics (TEs). Recently, the feasibility of high p-type carrier concentration (order of ∼1022cm−3) is experimentally demonstrated in various polymorphs of hafnium oxide (HfO2). In light of these studies, using the first-principles calculation combined with the semi-classical Boltzmann transport theory and phonon dynamics, we realized high TE performance in various polymorphs of HfO2 in a range of carrier concentrations at high temperatures. The phonon dispersion calculations confirm the dynamical stability of all polymorphs. The observed values of the Seebeck coefficient are 945.27 mV K−1, 922.62 mV K−1, 867.44 mV K−1, and 830.81 mV K−1 for tetragonal (t), orthorhombic (o), monoclinic (m), and cubic (c) phases of HfO2, respectively, at 300 K. These values remain positive at all studied temperatures which ensures the p-type behaviour of HfO2 polymorphs. The highest value of electrical conductivity (2.34 × 1020 Ω−1m−1s−1) observed in c-HfO2 at 1200 K, and the lowest value of electronic thermal conductivity (0.37 × 1015 W mK s−1) observed in o-HfO2 at 300 K. The lattice thermal conductivities at room temperature are 5.56 W mK−1, 2.87 W mK−1, 4.32 W mK−1, and 1.75 W mK−1 for c-, m-, o- and t- HfO2, respectively which decrease to 1.58 W mK−1, 0.92 W mK−1, 1.12 W mK−1, 0.53 W mK−1 at 1200 K for respective phases. The low lattice thermal conductivities lead to the high values of the figure of merit, i.e. 0.97, 0.87, 0.83, and 0.77 at 1200 K for the m-, o-, t-, and c- HfO2, respectively, at the optimized carrier concentrations (∼1021 cm−3). The predicted optimized carrier concentrations for various phases are in close agreement with the experimental reports. The estimated high figure of merit can make HfO2 a potential material for TE energy harvesting applications at elevated temperatures.

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3