Aeroelastic deformation measurement of Martian airplane for high-altitude flight experiment using stereophotogrammetry

Author:

Hiramatsu ShuichiORCID,Anyoji Masayuki,Fujita KojiORCID,Nagai Hiroki,Oyama Akira,Kato Hiroyuki

Abstract

Abstract A fixed-wing aircraft called Mars Airplane Balloon Experiment −2 (MABE2) developed by the authors was the subject of high-altitude flight demonstration test in this paper, which can simulate the near-actual environment of a Martian atmospheric flight. Although the flight condition is in the low-Reynolds-number region due to low density at high altitude, the wing suffers from aeroelastic deformation given the relatively high dynamic pressure load in the pull-up phase. Stereophotogrammetry was applied in the 6.5 m × 5.5 m low-speed wind tunnel at the Japan Aerospace Exploration Agency (JAXA), aiming to optically measure MABE2’s aeroelastic deformation under dynamic pressure loads equivalent to high-altitude flight test, with the MABE2’s reinforced structural strength. The results of the accuracy test indicated that stereophotogrammetry measures aeroelastic deformation at high accuracy of ±0.1 mm around the image center and ±0.3 mm around the edge. A slight deflection of up to 4 mm was observed on the main wing, whereas both the main and tail wings were hardly twisted. Compared with flight-simulation-assumed errors, these deformations are extremely small and have a negligible effect on the high-altitude flight test. The study results confirmed the practicality and efficiency of this optical measurement technique in aeroelastic deformation measurement for a real light aircraft.

Funder

Institute of Space and Astronautical Science

Publisher

IOP Publishing

Subject

General Engineering

Reference24 articles.

1. A Mars Airplane Oh Really?;Clarke,1979

2. Preliminary Design of a Long-Endurance Mars Aircraft;Colozza,1990

3. Aerial Explorers;Young,2005

4. ARES mission overview—capabilities and requirements of the robotic aerial platform 2nd AIAA ‘Unmanned unlimited’;Wright,2003

5. Design of the ARES mars airplane and mission architecture;Braun;J. Spacecr. Rockets,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3